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Magnetic resonance imaging (MRI) has opened a new window to the brain. Measuring
hippocampal volume with MRI has provided important information about several neuropsy-
chiatric disorders. We reviewed the literature and selected all English-language, human
subject, data-driven papers on hippocampal volumetry, yielding a database of 423 records.
Smaller hippocampal volumes have been reported in epilepsy, Alzheimer’s disease, dementia,
mild cognitive impairment, the aged, traumatic brain injury, cardiac arrest, Parkinson’s
disease, Huntington’s disease, Cushing’s disease, herpes simplex encephalitis, Turner’s
syndrome, Down’s syndrome, survivors of low birth weight, schizophrenia, major depression,
posttraumatic stress disorder, chronic alcoholism, borderline personality disorder, obses-
sive–compulsive disorder, and antisocial personality disorder. Significantly larger hippocam-
pal volumes have been correlated with autism and children with fragile X syndrome.
Preservation of hippocampal volume has been reported in congenital hyperplasia, children
with fetal alcohol syndrome, anorexia nervosa, attention-deficit and hyperactivity disorder,
bipolar disorder, and panic disorder. Possible mechanisms of hippocampal volume loss in
neuropsychiatric disorders are discussed.
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MR-based in vivo hippocampal volumetric assess-
ment of the hippocampus has been a widely
employed neuroimaging technique in various neu-
ropsychiatric disorders. The hippocampus plays a
vital role in processes of memory formation and stress
and emotional regulation. Although the functions of
the hippocampus are still somewhat elusive, in
humans, the hippocampus has been directly imple-
mented in spatial and episodic memory (see Burgess
et al1 for a review). Lately, the role of the hippocam-
pus in semantic memory has been elucidated as
well.2,3 In addition, the hippocampus is also involved
in novelty processing.4,5 Within the hippocampus,
functional segregation exists, with the left anterior
hippocampus processing both behaviourally relevant
and behaviourally irrelevant novelty as well as
register mismatches between expectation and experi-
ence, and the posterior hippocampi processing
familiarity.4,6,7 Regulation of the hypothalamo-pitui-

tary-adrenal (HPA) axis is another important function
of the hippocampus.8

Glucocorticoid receptors in the hippocampus are
activated by rising glucocorticoid levels during stress,
in order to mediate fast feedback inhibition of the
HPA axis. Stress, hypoxia, and increased glutamate
have been associated with damage to the hippocam-
pus, which has increased interest in this area in
neuropsychiatric disorders. The hippocampus has
been implicated in several neuropsychiatric disor-
ders. Sullivan et al9 examined the extent to which
genes and the environment exert differential contri-
butions to hippocampal structural integrity in hu-
mans, and showed that the volume of the
hippocampus, as measured on MRI, is subject to
substantially less genetic control than comparison
brain regions. Environmental factors thus play a large
role in determining hippocampal morphometry.

The advent of MRI in the last few decades has
witnessed an escalation of hippocampal volumetric
studies in various neuropsychiatric disorders.
The medial temporal limbic area is specifically
affected in Alzheimer’s disease (AD) and temporal
lobe epilepsy (TLE), and hippocampal volumetric
assessment has aided in diagnosis and etiology
of these disorders.10,11 Similarly, the psychotic fea-
tures of schizophrenia have been attributed to
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abnormal hippocampal activity and a disturbance of
hippocampal–cortical connections.12 Work by Sapols-
ky et al13,14 and others on the effect of glucocorticoids
and stress exposure on the hippocampus in rats
provided the theoretical framework for hippocampal
volumetric studies in stress- and anxiety-related
disorders such as depression and posttraumatic stress
disorder (PTSD). The noninvasive nature of MR-based
volumetric assessment has enabled researchers to
assess the nature and longitudinal course of hippo-
campal volume in numerous other neuropsychiatric
disorders as well.

However, studies have used a variety of different
research designs and methodologies, and have also
come up with (sometimes) inconsistent results. The
companion paper (see Geuze et al447) has focused on
the differences in segmentation protocols used. This
paper will focus on findings in hippocampal volume
in studies across the spectrum of neuropsychiatric
disorders, from temporal lobe epilepsy and Hunting-
ton’s disease, to schizophrenia and PTSD, thus
establishing a global overview of hippocampal volu-
metric findings which may be used to make theore-
tical assumptions as to what these hippocampal
volume reductions actually mean, and how they
relate to the etiology and course of these disorders.

Materials and methods

We performed a Medline Indexed search with the
keywords ‘hippocampus,’ ‘volume,’ and ‘MRI.’ All
the abstracts were carefully scrutinized, and from this
database all English-language, human subject, data-
driven papers were selected yielding a database of
423 records (only papers published before December
31, 2003 were included). Major advances in MRI
hardware and software were implemented from
1988,15 and thus studies prior to 1988 were not
included. In cases, where MRI studies reported data
from the same subjects, but used different analyses,
both references were included.

Results

The number of MRI hippocampal volumetric studies
performed has steadily increased over the last decades,
as Figure 1 shows. From 1992 onwards, the number of
studies on hippocampal volume increases linearly.
This increase stabilizes at approximately 50 studies
per year by the year 2000. The increase in studies since
1992 was fuelled by several researchers who have
published volumetric protocols and neuroanatomical
guidelines which have been adopted by others.16–21

Hippocampal volumetric studies have been per-
formed in more than 40 different populations, and are
especially popular in disorders such as TLE, schizo-
phrenia, and AD. In our database, these populations
have been re-grouped into 34 diagnostic categories
(see Table 1). In the majority of these studies a
decrease in hippocampal volume was expected, and
subsequently found. However, in a large number of

neuropsychiatric disorders the data are not always as
consistent as in studies with temporal lobe epileptic
or AD patients. Although within disorders there is
some consistency in the type of protocols that
researchers have used, slight variations in each of
these protocols may amount to significant differences
in their findings (for a review see Geuze et al447).

Temporal lobe epilepsy
In temporal lobe epilepsy hippocampal volumetry has
played an important role in the determination of
hippocampal sclerosis (HS) or hippocampal atrophy.
Significant reduction in hippocampal volumes is
used as a specific marker for HS, and right-side
minus left-side hippocampal formation volume (DHF)
is used to quantify unilateral HF atrophy.22–31 These
methods are superior to visual inspection of MR
images.32 Hippocampal volumetric analysis with MRI
is not always able to detect hippocampal sclerosis
accurately,33 however, in those cases the additional
analysis of entorhinal cortex volume or volume ratio
analysis may be able to provide accurate lateralization
of seizure focus (see Bernasconi et al34 and Vossler
et al,35 respectively). These methods have demon-
strated considerable efficacy, especially with the
addition of T2 relaxation time data.36–41

Patients with mesial temporal lobe epilepsy exhibit
smaller hippocampal volumes.16,42–47 This hippocam-
pal volume reduction is highly concordant with the
side of the epileptogenic focus, and hippocampal
deficits are most pronounced ipsilateral to the
epileptic focus.48–52 If amygdala volume reductions
are also documented, an additional gain in specificity
of seizure lateralization is achieved.53,54 Quigg et al46

showed that hippocampi contralateral to the epileptic
focus are also smaller in TLE than in controls, but
larger than hippocampi ipsilateral to the epileptic
focus (see also Lambert et al55). Unilateral hippocam-
pal volume loss and increased T2 value were found in
71% of patients with HS, and bilaterally normal
hippocampal volume and T2 value were found in
67% of patients without HS.36 Within the hippocam-
pus, volume reduction is usually not uniform; the
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Figure 1 Number of hippocampal volumetric studies with
MRI per year from 1989 to 2003.
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hippocampal head is more atrophic than the hippo-
campal body and hippocampal tail.56 Lately, several
studies have also determined progressive volume loss
in mesial TLE.57,58 Hippocampal volume is correlated
with entorhinal cortex volume in TLE,59 and with
flumazenil binding.60

A longer epilepsy duration,61–64 a high number of
seizures,44,65–67 an earlier age of onset,61,65,66,68 the
presence of early aberrant neurological insults such as
febrile convulsions,65,66,68–70 and even gender (men
have increased risk of seizure damage),71 have all
been associated with smaller hippocampal volume in
TLE. Some discrepancies exist here as well, as some
studies have been unable to find a relation between
seizure frequency or longer epilepsy duration
and hippocampal volume.72,73 In some studies, satis-
factory surgical outcome seems to be related to

hippocampal atrophy prior to surgery,50,74,75 but not
in others.47 Prompt treatment after a status epilepticus
may prevent progressive hippocampal volume reduc-
tion.76,77

The volume reduction witnessed in TLE is the
result of neuronal cell death. Lee et al78 compared
MRI hippocampal volumes prior to anterior temporal
lobectomy with quantitative neuronal density mea-
surements in resected hippocampal specimens and
found evidence for a significant correlation of MR-
derived hippocampal volume with neuronal density
in the CA1, CA2, and CA3 subfields of the hippo-
campus. This finding has been confirmed by Luby
et al75 and Briellmann et al79 who found that the
ipsilateral hippocampal volume best predicted the
neuronal cell count in the dentate gyrus, whereas
the T2 relaxation time, on the other hand, best

Table 1 Number of studies in various neuropsychiatric disorders which have examined hippocampal volumes with MRI with
some general findings

Disorder Number of studies General findings

Temporal lobe epilepsy 84 k Hippocampi, most pronounced ipsilateral to epileptic focus
Schizophrenia 76 k/2 Hippocampi bilaterally
Alzheimer’s disease 56 k Hippocampi bilaterally; marker for temporal lobe degeneration
Normal controls 44 Hippocampal volume is dependent on gender, handedness, and age
Other epilepsy 23 k Hippocampi bilaterally
Major depression 20 2/Recently k hippocampi bilaterally have been demonstrated
Aged 15 Smaller hippocampi are associated with normal aging
PTSD 14 k/2 Smaller hippocampi bilaterally
Other dementia 11 k Hippocampi
Alcoholism 9 k/2 Hippocampi bilaterally
Bipolar disorder 7 k/m Hippocampal volume
Mild cognitive impairment 7 Hippocampal volume loss predictive of conversion to AD
TBI 6 k Hippocampi bilaterally
Autism 5 k/m Hippocampal volume
Down’s syndrome 5 k Hippocampal volume bilaterally
APOE-epsilon 4 allele pos 3 Additionally k hippocampi compared to controls
Borderline personality disorder 3 k Hippocampi bilaterally
Febrile seizures 3 k/2 Hippocampi
Herpes simplex 3 k Hippocampi
Korsakoff’s syndrome 3 k/2 Hippocampi
OCD 3 k/2 Hippocampi bilaterally
Amnesia 2 k Hippocampi bilaterally which correlates with impaired memory
Cardiac arrest 2 k Hippocampi
Cushing’s disease 2 k Hippocampi bilaterally; volume increases after treatment
Fragile X syndrome 2 m Hippocampi bilaterally
Low birth weight 2 k Hippocampi
Panic disorder 2 2 Hippocampi compared to controls
Parkinson’s disease 2 k Hippocampi bilaterally
ADHD 1 2 Hippocampi compared to controls
Anorexia nervosa 1 2 Hippocampi compared to controls
Antisocial personality disorder 1 Volume of posterior hippocampi negatively correlated to psychopathy
Breast cancer surgery 1 k Left hippocampi in women with distressing recollections
Congenital adrenal hyperplasia 1 2 Hippocampi compared to controls
Fetal alcohol syndrome 1 2 Hippocampi compared to controls
Huntington 1 k Hippocampi bilaterally
Sleep apnea 1 k Gray matter concentration in hippocampi
Turner’s syndrome 1 k Hippocampi bilaterally

k¼ smaller m¼ larger k/m¼ both smaller and larger hippocampal volumes haven been reported 2 no significant changes k/
2¼ both smaller and no significant studies have been reported.
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predicted the glial cell count in the dentate gyrus (see
also Diehl et al,80 Kuzniecky et al,81 and Van
Paesschen et al82). It is not clear whether the neuronal
cell death also constitutes functionally relevant
tissue, as hippocampal volume loss is not a major
determinant of regional hypometabolism in TLE.83

Although a later study by Theodore et al84 was able to
find a significant relation between hippocampal
volume and glucose metabolism.

Studies in TLE have also correlated the left
hippocampus with verbal memory.85,86 Trenerry
et al87 found that the ratio of the right vs left
hippocampal volume is significantly correlated with
postoperative verbal memory change. Later, they
demonstrated that left anterior temporal lobectomy
(ATL) patients revealed an expected decrease in
verbal memory postoperatively regardless of whether
the volumetrically symmetric hippocampi were
atrophic.88 Left temporal lobectomy patients with
bilaterally atrophic hippocampi have the poorest
verbal memory before and after operation, a finding
that has been corroborated by Martin et al89 who
showed that patients with left TLE and the presence
of bilateral hippocampal atrophy had worse verbal
memory before and after ATL compared to patients
with unilateral hippocampal atrophy or patients with
right TLE and bilateral hippocampal atrophy. Baxen-
dale et al90 demonstrated that patients with smaller
remnant hippocampal volumes demonstrated more
postoperative memory decline than those with larger
remnant hippocampal volume, and that extensive
shrinkage of the remnant volume was associated with
postoperative memory decline in both right and left
ATL patient groups.

Right temporal lobectomy patients tend to have
improved verbal memory postoperatively indepen-
dent of bilateral hippocampal atrophy. Although a
relation of hippocampal volume with visual memory
has been much harder to find,85 Baxendale et al91 did
show that right hippocampal volume was signifi-
cantly correlated with delayed recall of a complex
figure. Hippocampal asymmetry (right minus left
hippocampal volume) is significantly correlated with
right minus left intracarotid amobarbital memory
scores.92

Hippocampal volumetry has also been used to
determine region of interest,93–95 or partial volume
correction96 for PET in temporal lobe epilepsy. A
number of studies have also examined methodologi-
cal issues in hippocampal volumetry in epilepsy such
as, optimizing hippocampal volume determina-
tion,17,97 the necessity of hippocampal volume nor-
malization,98–100 the comparability and reliability of
manual and digitizer measurements,49 the correlation
of hippocampal body with total hippocampal
volume,101 the intra- and interobserver variability,102

and the utility of automated methods.31,103

In summary, hippocampal volumetry with MRI is
primarily utilized in the determination of hippocam-
pal atrophy and hippocampal sclerosis. Pre- and
postoperative hippocampal volumes are correlated

with neurophysiological, neuropathological, neurop-
sychological, and clinical findings, as well as surgical
outcome.30 The presence of decreased hippocampal
volume in TLE has been correlated with decreased
verbal memory pre- and postoperatively. Several
studies have also evaluated the link between hippo-
campal volume and other predictors with outcome
measures of ATL.

Other epilepsy
In patients with porencephaly-related seizures, bilat-
eral amygdala–hippocampal atrophy exists in the
presence of unilateral cysts.104 Reduced hippocampal
volume, or loss of volume asymmetry has also been
found in partial epilepsy,105,106 and childhood epi-
lepsy.107,108 Voxel-by-voxel comparison of brain re-
gions in juvenile myoclonic epilepsy and TLE failed
to show hippocampal atrophy in either disorder.109

Hippocampal volumetry data in temporal lobe epi-
lepsy should be corrected for total brain volume, as
this is the largest predictor of hippocampal volume.110

Traumatic brain injury
Arciniegas et al111 reported significantly smaller
hippocampal volume bilaterally in traumatic brain
injury (TBI) patients compared to matched normal
control subjects. In two large samples of 94 and 118
patients with TBI, Bigler et al112,113 showed that TBI
patients had bilaterally smaller hippocampi com-
pared to normal controls. In three cases of TBI
acquired at birth, at age 4, and at age 9, 3D volumetric
MRI revealed bilateral hippocampal volume reduc-
tion 13-15 years after the occurrence of TBI.114 This
volume reduction is not always related to the severity
of the injury. No significant volume differences were
found in mild vs severe TBI.115 In a morphometric
study before and after anterior cingulotomy signifi-
cantly smaller bilateral hippocampi were not
found.116

Alzheimer’s disease
In Alzheimer’s disease (AD) hippocampal volume
loss is a hallmark of the disorder.117,118–130 Smaller
hippocampal volume is also present in mild AD,131,132

in African Americans with AD,133 and is more
pronounced in those AD patients who carry
the epsilon 4 allele134–136 (for an exception see Bigler
et al137). A study comparing mild AD patients
with nondemented controls using large-deformation
high-dimensional brain mapping found significant
volume loss over time and different patterns
of hippocampal shape change over time, that distin-
guished mild AD from healthy aging.138 Although
hippocampal volume loss is not specific to
AD, volume loss is more severely manifested in AD
than in other dementias.139–141 There is one study,
however, where hippocampal volume loss present in
demented Parkinson’s disease (PD) patients, was
significantly worse than the volume loss exhibited
in AD patients.142 The hippocampal volume loss in
AD has been shown to be related to the degree of
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neurophysiological activity as measured by magne-
toencephalography.143

Researchers have found that hippocampal volume
loss is able to discriminate patients and controls
accurately, and that age- and gender-adjusted, normal-
ized MRI-based hippocampal volumetric measure-
ments provide a sensitive marker of the mesial
temporal lobe neuroanatomic degeneration in
AD.121,144–146 However, use of hippocampal volume
exclusively is not advocated by all authors,147–149

and other structures such as the amygdala and the
entorhinal cortex may also need to be measured,150–153

or hippocampal N-acetyl aspartate measurements may
need to be performed to improve diagnosis.154 Karas et
al155 performed voxel-based morphometric analysis in
AD and found volume loss of other structures to be
equally predictive of AD. Others have provided
evidence that assessment of delayed recall with the
Visual Reproduction Test is of high diagnostic
accuracy, even surpassing hippocampal volumetry.156

Despite the theoretical rationale for the superiority of
entorhinal measurements in early AD, Xu et al,157

present evidence that measurements of the hippocam-
pus and entorhinal cortex were approximately equiva-
lent at intergroup discrimination. Because of the
ambiguity surrounding entorhinal cortex measure-
ment, measurements of the hippocampus may actu-
ally be preferable due to superior reproducibility of
the measurements. Age transformation may provide
an easily applicable method to increase the clinical
diagnostic accuracy of hippocampal measurements by
considering the effect of aging on hippocampus
volume.158 Progressive measurements of hippocampal
volume loss provide some additional information, but
do not increase the discriminating power signifi-
cantly.159 Very accurate volumetric measurements of
the whole hippocampal formation can be obtained by
MRI, which strongly correlates with neuronal num-
bers, and suggest a high anatomical validity of
magnetic resonance imaging volume measurements.160

In AD patients, the volumes of the left hippocam-
pus correlated significantly with the Mini Mental
State Examination score and with immediate and
delayed verbal memory; the smaller the volume the
more impaired the memory performance.124 Other
researchers have found a similar correlation between
memory performance and hippocampal volume de-
cline.161–164 Kohler et al165 also examined this relation
and found that hippocampal volume correlated
positively with delayed, but not immediate recall of
a verbal auditory list learning task. In normal controls
there was a trend towards a negative association
between hippocampal volumes and delayed verbal
recall. De Toledo-Morrell et al166 showed that left
hippocampal volume was the best predictor of free
recall and delayed free recall of verbal information,
and that recall and delayed recall of the spatial
location of verbal items were best predicted by right
hippocampal volume. They also showed a differential
effect, as this relation between hippocampal volume
and memory function observed in cases with AD did

not hold for healthy aged control subjects. Some
research groups have not been able to link hippo-
campal volume loss with either severity of memory
impairment,167 or general or emotional memory
performance.168

In several studies, decreased hippocampal volume
has been shown to be a risk factor for AD.169–173

Individuals carrying the apolipoprotein E epsilon 4
allele (APOE-epsilon 4 allele) are at high risk for
developing AD. The presence of a single APOE-
epsilon 4 allele is associated with an increased rate of
hippocampal volume loss in healthy women in their
sixth decade of life that is not related to any
detectable memory changes.174 Similarly, nondemen-
ted elderly subjects carrying the APOE-epsilon 4
allele display decreased hippocampal volume sym-
metry on MRIs.175 MRI measurements of hippocampal
volume begin to decrease in conjunction with
memory decline in cognitively normal persons at risk
for Alzheimer’s disease,176 and the rate of hippocam-
pal volume loss correlates with change in clinical
status.177

The determination of hippocampal volume in AD
may be reliably and consistently assessed across
different research centers.178 Crum et al179 and Gosche
et al180 have examined automated methods of deriving
hippocampal volumetry and found them to be equally
reliable to manual segmentation methods in AD. The
finding of a strong relationship between left hippo-
campal volume and performance on odor identifica-
tion tasks is compatible with left-hemisphere
superiority for verbally mediated olfactory tasks,
suggesting a neural substrate for the breakdown in
functional performance on verbally mediated odor
identification tasks in AD.181

Dementia
Studies of hippocampal volume have also been
performed in dementias other than AD. In a study
comparing demented patients with cognitive impair-
ment subjects and elderly controls, demented patients
showed the greatest annual rates of volume loss in the
hippocampus and cortex.182 This volume loss was
also significantly greater in demented patients com-
pared with both cognitive impaired and elderly
control subjects. Similarly, Grunwald et al183 found
hippocampal volume loss in dementia, and Barber
et al184 found a loss of hippocampal asymmetry in
patients with dementia with Lewy bodies (DLB) (as
well as AD patients) compared to normal controls.
Volumetric MRI of the brain in elderly subjects with
lacunes, mild cognitive impairment, a group of
patients with dementia, and a group with probable
AD revealed hippocampal volume loss in all three
patient groups.185 Du et al186 assessed hippocampal
volume loss in cognitively normal subjects, patients
with subcortical ischemic vascular dementia, and
patients with AD. Patients with subcortical ischemic
vascular dementia had smaller hippocampi than
cognitively normal subjects, but larger hippocampi
than patients with AD. Voxel-based morphometric

Hippocampal volumetrics
E Geuze et al

164

Molecular Psychiatry



analysis of patients with semantic dementia and a
group of age-matched normal controls did not find
evidence of significantly smaller hippocampi.187 In a
study comparing global and regional atrophy on MRI
in subjects with DLB, AD, vascular dementia, and
normal aging, subjects with DLB had significantly
larger temporal lobe, hippocampal, and amygdala
volumes than those with AD.188 No significant
volumetric difference between subjects with DLB
and vascular dementia was observed. The first study
to use voxel-based morphometry to assess hippocam-
pal volume in DLB showed preservation of hippo-
campal volume relative to AD.189 Bigler et al190 found
a significant relationship between hippocampal
volume loss and performance on the Mini-Mental-
State-Examination Questionnaire. In patients with
semantic dementia (the temporal variant of fronto-
temporal dementia), there was no significant positive
correlation between recollection and volume of the
hippocampus.191 For temporal horn and hippocampal
volume determination, corrections with total brain
volume rather than total intracranial volume may
provide more clinically meaningful corrections.192

Mild cognitive impairment
In line with investigations in AD, our database also
includes studies which have specifically examined
hippocampal volume in mild cognitive impairment
(MCI). MCI is a transitional state between the
cognitive changes of normal aging and AD, in which
persons experience unacceptable memory loss, with-
out meeting criteria for AD.193 Heterogeneity in the
use of the term MCI is significant, so it is important to
recognize diagnostic criteria that studies use. One of
the first studies measured volumes of the hippocam-
pus in age-associated cognitive impairment subjects
(as defined by criteria from Crook et al194)and age- and
sex-matched controls, and did not find evidence of
smaller hippocampal volume,20 although the volu-
metric asymmetry between the right and left hippo-
campi was reduced in age-associated cognitive
impairment subjects. Another earlier study investi-
gated hippocampal atrophy in normals, patients with
AD, and minimally impaired individuals (with a
MMSE 4 23, Global Deterioration Scale (GDS) of 3),
Clinical Dementia Rating (CDR) of 0.5).195 Signifi-
cantly smaller hippocampi differentiated the mini-
mally impaired individuals from the control group.
People with mild cognitive impairment are at a higher
risk for developing AD. An investigation by Jack
et al196 revealed that hippocampal volume loss
determined by premorbid MRI volumetric analysis
is predictive of subsequent conversion to AD, a
finding that was corroborated by others.130,197,198

Convit et al199 also assessed the ability of medial
temporal lobe volume loss to predict decline of MCI
to AD and found that addition of baseline medial
occipitotemporal, and the combined middle and
inferior temporal gyri as predictors increased overall
classification accuracy and sensitivity. Encoding en
retrieval memory deficits in patients with amnestic

MCI, as defined by criteria from Petersen et al,193 are
correlated with declines in hippocampal grey matter
density.200

Aged
Smaller hippocampi have been associated with
normal aging201–209 (in contrast to Sullivan et al210),
and may even constitute a risk factor for the
development of dementia.211,212 In a sample of elderly
persons, MR derived hippocampal volume was
correlated with delayed memory performance.213 In
another sample of elderly people with suspected
normal pressure hydrocephalus, the volume of the
hippocampus was correlated with MMSE scores.214

Elderly women experience greater hippocampal vo-
lume loss than aged men.215 In a large sample study,
den Heijer et al216 found that higher plasma homo-
cysteine levels, which are associated with AD, are
correlated with smaller hippocampi in the elderly.
Sullivan et al9 examined the balance of environmen-
tal and genetic effects on hippocampal size in a large
sample of elderly twin men and provide evidence that
only 40% of the hippocampal volume variance was
attributable to genetic influences. In nondemented
elderly subjects, hippocampal head size has been
related to verbal memory performance.217

Estrogen seems to have a neuroprotective
effect.218,219 A recent study by Eberling et al220

compared hippocampal volume in women taking
estrogen replacement therapy (ERT) with matched
controls. Women taking ERT had larger right hippo-
campal volumes and bilateral anterior hippocampal
volumes than women not taking ERT. However,
another recent study investigating the relation be-
tween endogenous estradiol levels found that aged
women with higher total estradiol levels had smaller
hippocampal volumes and poorer memory perfor-
mance.221

Autism
The first volumetric MRI studies in autism did not
reveal a significant hippocampal volume reduction in
autistic individuals when compared to normal control
subjects.222,223 However, when corrected for whole
brain volume, Aylward et al224 were able to find
evidence of significant hippocampal volume loss.
Similarly, a study comparing high-functioning autis-
tic and normal school-age boys, all with normal
intelligence, found that the hippocampus–amygdala
complex appeared to be relatively smaller in the
autistic than in the typically developing brain.225 In
contrast to all these reports, Sparks et al226 reported
significantly increased hippocampal volumes in
young children with autism spectrum disorder bilat-
erally when compared to age-matched control groups
of typically developing and developmentally delayed
children.

Down’s syndrome
Raz et al227 examined neuroanatomic abnormalities
in adults with Down’s syndrome (DS) and revealed
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that DS subjects had substantially smaller hippocam-
pal formations compared to sex-matched healthy
control subjects, a finding that was corroborated by
others.228–230 A similar study with a larger number
of subjects revealed decreased left hippocampal
volume in adults with DS compared to healthy
controls.231 In a study examining both demented and
nondemented DS subjects, all DS subjects revealed
significantly smaller hippocampi than controls.232

Non-demented Down’s syndrome adults have an
age-related decrease of hippocampus volume, which
is not found in age-matched healthy comparison
subjects.230 Children with Down’s syndrome also
display smaller hippocampi bilaterally.229

Schizophrenia
Volumetric studies of the hippocampus constitute the
second largest diagnostic category in the database
with a total of 76 hippocampal volumetric MRI
studies in patients with schizophrenia, patients with
first-episode schizophrenia, and in relatives of
patients with schizophrenia. Smaller bilateral hippo-
campi in schizophrenia have been found by a large
number of research groups.233–247 This reduction in
volume is related to symptom severity.248 Luchins
et al249 was only able to provide evidence of smaller
bilateral hippocampi in patients with schizophrenia
and hypo-osmolemia. A twin study by Baare et al250

revealed that twins discordant for schizophrenia had
smaller hippocampal volumes compared to healthy
twin pairs, irrespective of zygosity. Becker et al251 and
Narr et al252 reported smaller bilateral posterior
hippocampi in patients with schizophrenia. Others
found evidence for a smaller anterior amygdala-
hippocampal complex and anterior hippocampus
bilaterally in schizophrenia, respectively.253,254

Some studies were only able to find evidence for
significantly smaller left hippocampal volume.255–257

Stefanis et al258 found evidence for smaller left
hippocampi only in patients with schizophrenia and
birth complications. Others have failed to find any
evidence of smaller hippocampi in patients with
schizophrenia, compared to controls.52,259–270 Meta
analysis of hippocampal volumetric studies in schi-
zophrenia concluded that schizophrenia was asso-
ciated with bilateral hippocampal volume loss.271

Lately new techniques, such as hippocampal shape
analysis in schizophrenia patients are providing some
interesting results.252 Csernansky et al272 shows that
shape analysis reveal differences between patients
with schizophrenia and controls in the absence of
volumetric changes. Similarly, in another study they
were not able to find significant hippocampal volume
changes in patients with schizophrenia and compar-
ison subjects, but did provide evidence for abnormal
hippocampal shape and asymmetry in schizophre-
nia.261 Shenton et al273 also showed that shape
analysis may provide group discrimination in schizo-
phrenia. Velakoulis et al246 provided evidence that the
volume loss behind the head of the hippocampus is
discriminating for schizophrenia. Wang et al274 also

found that the hippocampal asymmetry was different
in schizophrenia.

Other hippocampal volumetric studies in schizo-
phrenia have also been performed. De Lisi et al275

performed a longitudinal study in chronic schizo-
phrenia and found a progressive decrease in size of
the amygdala-hippocampal complex over time. In a
treatment study, Arango et al276 found that there was
no significant difference in hippocampal volume
between schizophrenia patients treated with haloper-
idol vs patients treated with clozapine.

There are now several studies investigating
hippocampal volumetry in first-episode (FE) schizo-
phrenia. Studying FE schizophrenia is important
because confounds such as chronic illness and
chronic medication are absent. Bogerts et al277 and
Kubicki et al278 found evidence of a smaller left
hippocampus in FE patients compared to controls.
Hirayasu et al279 found smaller left posterior amygda-
la hippocampal complex volumes, and Velakoulis et
al247 found an additional left hippocampal volume
reduction in FE-schizophrenia compared to chronic
schizophrenia. Others found smaller hippocampal
volume bilaterally,280,281 or smaller bilateral anterior
hippocampi.282–284 However, other studies did
not find any significant hippocampal volume reduc-
tion in FE schizophrenia.264,285–289 Both Wood et al290

and Lieberman et al283 performed longitudinal
studies in FE schizophrenia. They did not find
progressive hippocampal volume loss over time.
Szeszko et al291 investigated neuropsychological
correlates of smaller hippocampi in FE schizophre-
nia. Among men, worse executive and motor func-
tioning correlated significantly with smaller anterior
hippocampal volume. Among women, no relation-
ship between neuropsychological variables and either
posterior or anterior hippocampal volumes was
found.

Several studies have also assessed hippocampal
volumes in childhood-onset schizophrenia. However,
whereas some studies have shown reduction of the
left hippocampus after a 2-year follow-up in compar-
ison to controls,292 or bilateral hippocampal volume
loss over time,293 others did not find smaller hippo-
campi in early-onset schizophrenia,294,295 although it
seems that normal hippocampal asymmetry (right
greater than left) is lacking in childhood-onset
schizophrenia.294,296 Barta et al297 examined hippo-
campal volumes in patients with late-onset schizo-
phrenia, AD, and normal elderly controls. They found
that patients with late-onset schizophrenia had sig-
nificantly smaller left hippocampi in comparison to
the healthy controls.

In individuals at high risk for developing schizo-
phrenia, researchers have found smaller bilateral
hippocampi,298,299 as well as no significant hippo-
campal volumetric changes.300 A study comparing
schizophrenia patients with subjects at high risk
for developing schizophrenia and controls, found
that the left amygdala–hippocampal complex was
smaller in FE schizophrenia than in the high-risk
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group, which had smaller left amygdala–hippocampal
complexes than controls.301 Hippocampal volume and
shape analysis showed that the hippocampi of
unaffected siblings of schizophrenia subjects are
smaller and that the head of the hippocampi are
deformed compared to controls.302 The unaffected
siblings’ hippocampi were indistinguishable from
schizophrenic subjects.

Major depression
Several studies have examined hippocampal volume-
try with MRI in MD. An early MRI volumetric study
was unable to find evidence of a significantly smaller
amygdala–hippocampal complex in depressed pa-
tients.303 Comorbid hypercortisolemia does not sig-
nificantly influence hippocampal volume either.304

Lately, studies have found smaller bilateral hippo-
campal volume in patients with a first episode of
depression, and a past history (multiple episodes) of
depression, respectively, compared to controls.305–307

These last findings have been corroborated by
MacQueen et al,308 who compared hippocampal
volumes in depressed subjects experiencing a post
pubertal onset of depression with matched healthy
control subjects, and found that only depressed
subjects with multiple depressive episodes had
hippocampal volume reductions.

Statistically significant smaller left hippocampal
volumes were found in patients with multiple
episodes of depression currently treated with anti-
depressant medication,309 and in patients with treat-
ment-resistant depression.310 Voxel-based morpho-
metry in chronic depressed patients revealed reduced
grey matter density in the left hippocampus, which
was correlated with measures of verbal memory.311

Others did not observe any significant differences in
hippocampal volumes of patients with major depres-
sion and control subjects.312,313 In an effort to explain
the inconsistencies in hippocampal volume findings
in prior morphometric studies of MD, Vythilingam et
al314 assessed hippocampal volume in depressed
subjects with and without childhood abuse, as well
as in control subjects. Depressed subjects with child-
hood abuse had an 18% smaller mean left hippocam-
pal volume than the nonabused depressed subjects
and a 15% smaller mean left hippocampal volume
than the healthy subjects.

Posener et al315 used high-dimensional mapping of
the hippocampus to quantitatively characterize size
and shape of the hippocampus in patients with MD
and controls. While the depressed patients and
comparison subjects did not differ in hippocampal
volume, there were highly significant group differ-
ences in hippocampal shape. In a treatment study,
Sheline et al316 investigated the effect of antidepres-
sant treatment on hippocampal volume in MD, and
found that longer durations during which depressive
episodes went untreated with antidepressant medica-
tion were associated with reductions in hippocampal
volume, suggesting that antidepressants may have a
neuroprotective effect in MD.

Kim et al317 found no amygdala–hippocampal
complex volumetric differences in deluded depressed
geriatric patients vs nondeluded depressed geriatric
patients. In other studies on geriatric depression,
Steffens et al318 found that patients tended to have
smaller bilateral hippocampal volumes compared to
controls, whereas Bell-McGinty et al319 demonstrated
smaller right hippocampal volumes in geriatric
depression. Hsieh et al320 expanded this finding and
showed that subjects with small right hippocampal
volumes were less likely to achieve remission.
Smaller left hippocampal volumes in geriatric depres-
sion seem to be a risk factor for developing demen-
tia.321 Although significantly smaller hippocampi
were not found in one study of pediatric patients
with MD, volumetric MRI has revealed significantly
increased amygdala-hippocampal volume ratios in
pediatric MD.322 A very recent study in a small sample
of pediatric patients with MD did reveal decreased
hippocampal volumes bilaterally.323 However, in this
study a slightly older population of patients was used.

Bipolar disorder
Swayze et al267 compared bipolar patients with
controls and found a significantly smaller right
hippocampus in bipolar patients. Later hippocampal
volumetric studies conducted in bipolar patients did
not find significantly smaller hippocampal volumes
in bipolar patients vs controls.324–326 Later studies
were also unable to find significant hippocampal
volume reductions between bipolar patients and
normal controls regardless of the number of epi-
sodes.327,328 Increased right hippocampal volumes
associated with poorer neuropsychological function-
ing in bipolar patients have been reported in two
studies which did not include a control group.329,330

Posttraumatic stress disorder
The first study of hippocampal volume in PTSD by
Bremner et al331 provided evidence that combat-
related PTSD patients had statistically significantly
smaller right hippocampal volumes relative to that of
comparison subjects. Other studies found evidence of
significant bilateral hippocampal volume loss in
combat-related PTSD,332 or in PTSD patients with
various traumas.333 In childhood physical and sexual
abuse related PTSD, Bremner et al334 reported a
decrease in left hippocampal volume in comparison
with matched controls. Stein et al,335 who examined
hippocampal volume in women with sexual abuse,
and matched controls without abuse, also found
significantly smaller left hippocampi. Bilateral hip-
pocampal volume was significantly smaller in a small
sample study of substance and alcohol naı̈ve subjects
with combat-related PTSD compared to controls.336 In
monozygotic twins discordant for trauma exposure,
Gilbertson et al337 revealed that the identical non-
exposed twins of PTSD combat veterans had compar-
able hippocampi to their PTSD twin, but significantly
smaller hippocampi than combat veterans without
PTSD and their noncombat exposed twins, showing
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that smaller hippocampi may constitute a risk
factor for the development of stress-related
psychopathology.

Contrary to all these positive findings of hippo-
campal volume loss in PTSD, a study assessing
hippocampal volume in recent trauma victims did
not find evidence of hippocampal volume loss in
recent survivors of trauma who later developed PTSD,
both within 2 weeks of the trauma, and 6 months after
the event compared to other trauma survivors.338

Although 6 months might be too short a time in
which to see hippocampal volumetric changes. An-
other small sample study examining female victims of
intimate partner violence with and without post-
traumatic stress disorder was unable to find evidence
of smaller hippocampal volume.339 Schuff et al340 and
Neylan et al341 were also unable to find significantly
smaller hippocampal volume in patients with PTSD
compared to controls, although patients with PTSD
did display a significant reduction in N-acetylaspar-
tate in the hippocampus bilaterally. In chronic
alcoholics with PTSD hippocampal volume was not
additionally reduced.342

Recently, it has also been shown that women with
childhood sexual abuse and PTSD have smaller
hippocampi than women with PTSD but without
childhood sexual abuse, or than women without
PTSD but with childhood sexual abuse.343 Long-term
treatment with paroxetine is associated with in-
creased hippocampal volumes and improvement
of verbal declarative memory in PTSD.344 In a recent
study with voxel-based morphometry, Yamasue
et al345 did not find evidence of hippocampal volume
loss in PTSD. In contrast to the findings in
adult PTSD, children with PTSD do not exhibit
smaller hippocampi in comparison with matched
controls346–349 (see Table 2).

Chronic alcoholism
A study by Sullivan et al350 revealed bilateral anterior
hippocampal volume loss in men with chronic
alcoholism compared to healthy male control sub-
jects. Agartz et al342 examined hippocampal volume
in chronic alcoholics and compared this to overall
brain volume. They found that in chronic alcoholism,

the reduction of hippocampal volume is proportional
to the reduction of whole brain volume. Another
study also provided evidence of significantly reduced
hippocampal volumes in chronic alcoholics com-
pared to controls.351 Laakso et al352 compared hippo-
campal volume in late- onset type 1 alcoholics to
early-onset type 2 alcoholics, as well as in normal
volunteers. Compared to the controls, the right, but
not left, hippocampi were significantly smaller in
both alcoholic groups, even after controlling for
intracranial volume. De Bellis et al353 found signifi-
cantly smaller bilateral hippocampi in subjects with
alcohol abuse disorders compared to comparison
subjects.

Recently, pathologically raised levels of plasma
homocysteine have been shown to be significantly
correlated to smaller hippocampi.354 In addition, the
presence of an association between hippocampal
volume reduction and first-onset alcohol withdrawal
seizure was examined. They found the average
hippocampal volumes measured by high-resolution
MRI to be significantly reduced in alcoholics com-
pared with healthy controls, but found no correlation
with seizures355 confirming results of an earlier study
by Sullivan et al356 A study by Di Sclafani et al357

investigated hippocampal volumes in crack-cocaine,
crack-cocaine/alcohol-dependent subjects, and age-
matched controls, but did not find any hippocampal
differences between the three groups.

Other disorders

There are a number of studies which have investi-
gated hippocampal volumes in other neuropsychia-
tric disorders. The results of these studies are
summarized in Table 3. Decreased hippocampal
volumes have been reported in borderline personality
disorder, in obsessive-compulsive disorder, in cardiac
arrest, in Cushing’s disease, in herpes simplex
encephalitis, in Parkinson’s disease, in Huntington’s
disease, in Turner’s syndrome, and in survivors of low
birth weight. Children with fragile X syndrome
display significantly increased hippocampal
volumes. In panic disorder, in anorexia nervosa, in
congenital hyperplasia, in children with fetal alcohol

Table 2 Hippocampal volumetric findings in pediatric and adult manifestations of various neuropsychiatric disorders

Population Pediatric Adult

Epilepsy k Hippocampi bilaterally k Hippocampi bilaterally
Schizophrenia 2 In hippocampal volume k Hippocampi bilaterally
Depression 2 In hippocampal volume; larger amydala: hippocampus ratios

in depressed subjects
k Hippocampi bilaterally

PTSD 2 In hippocampal volume k Hippocampi bilaterally
TBI k Hippocampi bilaterally k Hippocampi bilaterally
Autism k/m Hippocampi bilaterally k Hippocampi bilaterally
Down’s syndrome k Hippocampi bilaterally k Hippocampi bilaterally

k¼ smaller m¼ larger k/m¼ both smaller and larger hippocampal volumes haven been reported 2 no significant changes k/
2¼ both smaller and no significant studies have been reported.
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syndrome, and in attention-deficit and hyperactivity
disorder hippocampal volume is preserved.

Normal controls
In several studies with normal control subjects, the
right hippocampus has been found to be larger than
the left hippocampus,19,358,359 although this difference
may not always reach significance.360 This asymmetry
is also present in children.361 Szabo et al362 compared
amygdala and hippocampal volume measurements
bilaterally between right- and left-handed partici-
pants. Right-to-left volume ratios differed signifi-
cantly between right- and left-handed participants
for both amygdala and hippocampus.

In children, hippocampi may also be measured
reliably (see Obenaus et al363 for a detailed protocol).
Developmental aspects of the hippocampus in chil-
dren have been examined.364,365 In developing chil-
dren aged 4–18, the hippocampus increases with
age.364 Pfluger et al366 developed normative volu-
metric data of the developing hippocampus in
children.

Hippocampal volumes are also subject to gender
differences. Bhatia et al201 found evidence for smaller
left hippocampi in women. Others also reported that
the volume of the hippocampal formation was larger
in men than in women.99,367 Contrary to this, a study
by Filipek et al368 reported that women have larger
hippocampi than men. Two other studies were not
able to find gender differences in hippocampal
volume.369,370 Similarly, gender did not affect right-
to-left amygdala and hippocampal volume ratios in
right- or left-handed participants.362 In men, the
hippocampus declines with age, starting in the third
life decade.371 From the age of 54, hippocampal
volume starts to decline at an increased rate (com-
pared to total brain atrophy) in both men and
women.372

Several studies performed in healthy subjects have
examined the relation of hippocampal volume to IQ
and memory. Full-scale IQ is significantly related to
hippocampal volume,373 and left hippocampal
volume is negatively associated with the level of
delayed verbal recall performance.374 Bilateral hippo-
campal volume corrected for whole brain volume is
negatively correlated with explicit memory,375 but not
with motor performance.376 In related work, Maguire
et al377 showed that the posterior hippocampi of
London taxi drivers were significantly larger relative
to those of control subjects, and that this volume
correlated with the amount of time spent as a taxi
driver, but was not related with innate navigational
expertise.378 These data provided evidence for the
theory that the posterior hippocampus stores a spatial
representation of the environment and has the ability
to expand regionally in order to accommodate
elaboration of this representation in people with a
high dependence on navigational skills.

Methodological issues related to hippocampal
volumetry have been ironed out with healthy con-
trols. Several studies have used healthy controls to

assess the reliability of new manual tracing proto-
cols,18,21,363,379–383 point-counting methods,384 or auto-
mated segmentation techniques.385–387 Other studies
have looked at specific methodological issues, such as
magnetic field strength,379,388,389 hippocampal orienta-
tion,390 the use of reformatted 3D images,391 the effect
of slice thickness,392 handedness,362 and economical
means of acquiring hippocampal volumes.393

Discussion

In epilepsy research and in temporal lobe epilepsy in
particular, hippocampal volumetry with MRI is
primarily utilized in the determination of hippocam-
pal atrophy and hippocampal sclerosis. In addition,
researchers have correlated pre- and postoperative
hippocampal volumes with neurophysiological, neu-
ropathological, neuropsychological, and clinical find-
ings, as well as surgical outcome.30 The hippocampal
sclerosis and hippocampal atrophy present in mesial
TLE is indicative of the epileptogenic focus and is
related to neuronal cell death. A large number of
predisposing, maintaining, and exacerbating factors
of hippocampal atrophy in TLE have also been
established. The presence of decreased hippocampal
volume in TLE has been correlated with decreased
verbal memory pre- and postoperatively. In addition,
the ratio between right and left hippocampal volume,
as well as gender, is correlated with postoperative
verbal memory.394 Several studies have also evaluated
the link between hippocampal volume and other
predictors with outcome measures of ATL.

An important issue in TLE is whether seizures are
the cause or the result of hippocampal sclerosis.
Kalviainen and Salmenpera,65 who sought to answer
this question by using MRI to investigate the
appearance of medial temporal lobe damage during
the course of partial epilepsy, and, particularly, to
determine whether recurrent or prolonged seizures
contribute to the atrophy, provided evidence that
hippocampal damage may indeed be both cause and
consequence of TLE. This debate is by no means
resolved, although longitudinal studies which allow
determination of cerebral damage when it occurs, as
well as new MRI techniques such as diffusion tensor
imaging may provide answers.395 Longitudinal stu-
dies are ongoing in patients with newly diagnosed
and chronic epilepsy, with an interscan interval of 3.5
years, using complementary voxel- and region-based
methods that can detect changes in hippocampal and
cerebellar volumes of 3%.

In AD, hippocampal volume loss is a manifested
morphological abnormality of the disease. Some
studies have also shown that decreased hippocampal
volume may also be a risk factor for developing AD.
Generally it is assumed that hippocampal volume loss
is able to discriminate patients and controls, espe-
cially when combined with entorhinal cortex
and temporal neocortical volume.10 The reduced
hippocampal volume present in these patients is
related to MMSE scores and memory performance.
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Table 3 Hippocampal volumetric findings in various neuropsychiatric disorders

Population Study Subjects Finding

Borderline
personality disorder

Driessen et al418 21 female patients with BPD, and 21 healthy
controls

Bilateral hippocampal volume reduction

Schmahl et al412 10 patients with BPD, and 23 control subjects Bilateral hippocampal volume reduction
Tebartz van Elst et al419 8 unmedicated female patients with BPD, and 8

matched healthy controls
Bilateral hippocampal volume reduction

Febrile seizures Szabo et al420 5 children 22–68 months old, and 11 controls, 15–
83 months old

Reduced hippocampal volume in children with
CFS, and right to left ratios greater than 1 in all 5
children with CFS compared to controls

Tarkka et al421 24 patients with a prolonged first febrile seizure, 8
with an unprovoked seizure after the first febrile
seizure, and 32 age-, sex-, and handedness-
matched control subjects

Mean total volumes of the right and left
hippocampal formations did not differ
significantly between any of the three groups

Scott et al325 14 patient with prolonged febrile seizures Hippocampal volume reduction, and significant
increase in hippocampal volume asymmetry

Herpes simplex Yoneda et al422 5 post- herpes simplex encephalitic (post-HSE)
patients with temporal lobe damage and memory
impairment, and 10 age-matched control subjects

Two patients had a marked atrophy of the
hippocampal formation, 3 patients had larger
hippocampi

Caparros-Lefebvre et
al423

11 patients with clinically presumed HSVE, and 5
matched controls

Hippocampal volume reduction

Colchester et al424 11 Korsakoff’s syndrome, 9 herpes encephalitis, 6
focal frontal lesion patients, and 10 healthy
controls

Hippocampal volume reduction present in herpes
encephalitis

Korsakoff’s
syndrome

Visser et al425 13 subjects with Korsakoff’s syndrome, 13 subjects
with chronic alcoholism without Korsakoff’s
syndrome, and 13 control subjects

Reduced hippocampal volume in Korsakoff’s
syndrome compared to subjects with chronic
alcoholism and healthy controls

Colchester et al424 11 Korsakoff’s syndrome, 9 herpes encephalitis, 6
focal frontal lesion patients, and 10 healthy
controls

No reduction in hippocampal volume in
Korsakoff’s syndrome.

Sullivan et al426 5 Korsakoff’s syndrome, 20 AD, 36 healthy controls Bilateral hippocampal volume deficits in
Korsakoff’s syndrome and AD compared to
controls

OCD Jenike et al427 10 female patients with OCD, and 10 matched
female control subjects

No significant differences

Szeszko et al428 26 patients with OCD, and 26 healthy comparison
subjects

OCD patients lacked the normal hemispheric
asymmetry of the hippocampus–amygdala
complex.

Kwon et al242 22 patients with OCD, 22 patients with
schizophrenia, and 22 normal subjects

Hippocampal volume was bilaterally reduced in
both OCD and schizophrenic patients vs the
normal controls

Amnesia Kopelman et al429 40 patients with organic amnesia, and 10 healthy
controls

Loss of hippocampal volume correlates
significantly with impaired memory performance

Isaacs et al430 10 adolescents with a diagnosis of developmental
amnesia (DA), 11 adolescents born preterm (PT),
and 8 age-matched normal controls

Bilateral reduction in hippocampal volume in the
two patient groups with DA significantly o PT
significantly o controls

Cardiac arrest Fujioka et al416 11 vegetative patients after cardiac arrest, and 22
healthy matched controls

Bilateral hippocampal volume reduction
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Grubb et al431 17 out-of-hospital cardiac arrest survivors, and 12
patients with uncomplicated myocardial infarction

Left amygdala–hippocampal volume was reduced
in memory-impaired OHCA victims compared
with control subjects

Cushing’s disease Starkman et al432 12 patients with Cushing’s disease Reduced hippocampal formation volume
Starkman et al433 22 patients with Cushing’s disease Increased hippocampal formation volume after

treatment
Fragile X syndrome Reiss et al415 15 fragile X subjects and 26 age- and IQ-matched

control subjects.
Hippocampal volumes in children with fragile X
were significantly increased bilaterally

Kates et al434 6 fragile X subjects and 7 normal controls Hippocampal volumes in children with fragile X
were significantly increased

Low birth weight Peterson et al435 25 eight-year-old preterm children, and 39
matched term control children

Bilateral hippocampal volume reduction in
preterm children compared to controls

Abernethy et al413 87 children (aged 15–16 years) with a history of
very low birth weight (o1500 g), and 8 age-
matched full-term controls

Children with a low IQ had smaller left
hippocampi, and a smaller hippocampal ratio (left
volume:right volume) than those with normal IQ

Panic disorder Vythilingam et al436 13 patients with panic disorder, and 14 healthy
subjects

No hippocampal volume reduction

Uchida et al437 11 patients with panic disorder, and 11 matched
controls

No significant hippocampal volume reduction

Parkinson’s disease Camicioli et al438 10 patients with PD, 10 with PD and dementia or
mild cognitive impairment, 11 with Alzheimer’s
disease, 12 control subjects

Bilateral hippocampal volume reduction in all
patient groups compared to controls

Laakso et al142 50 patients with AD, 9 patients with vascular
dementia, 12 patients with PD without dementia, 8
patients with PD and dementia, and 34 elderly
control subjects.

Significant reduction of hippocampal volume in
all patient groups compared to controls

ADHD Castellanos et al439 57 boys with ADHD, and 55 healthy matched
controls

No hippocampal volume reduction

Antisocial
personality disorder

Laakso et al440 18 male violent offenders with antisocial
personality disorder

Volume of the bilateral posterior hippocampus was
negatively correlated with scores on the
Psychopathy Checklist-Revised (which measures
the degree of psychopathy).

Anorexia nervosa Giordano et al441 20 AN females, and age-matched healthy female
controls

No significant difference was found between right
and left HAF in both patients and CG

Breast cancer
surgery

Nakano et al442 67 women who had had breast cancer surgery 3 or
more years earlier and had no history of PTSD or
major depression before the cancer

The volume of the left hippocampus was
significantly smaller in the subjects with a history
of distressing cancer-related recollections (N¼ 28)
than in those without any such history (N¼ 39).
There was no significant difference in right
hippocampal volume or whole brain volume
measured as a control

Congenital adrenal
hyperplasia

Merke et al443 27 children with CAH, and 47 sex- and age-
matched controls

No hippocampal volume reduction

Fetal alcohol
syndrome

Archibald et al444 14 FAS, 12 patients with prenatal exposure to
alcohol, and 41 healthy controls

No hippocampal volume reduction

Huntington’s disease Rosas et al445 18 patients with HD, and 18 age-matched healthy
controls

Bilateral hippocampal volume reduction in HD
compared to controls

Sleep apnea Morrell et al446 7 male patients with obstructive sleep apnea, 7
age- and handedness-matched male controls

Significantly lower grey matter concentration
within the left hippocampus

Turner’s syndrome Murphy et al414 18 women with TS, and 19 healthy age-matched
women

Bilateral hippocampal volume reduction in TS
compared to controls
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Hippocampal volume declines with age, and hippo-
campal volume loss is generally present in demented
patients, and in mild cognitive impairment. Trau-
matic brain injury is also associated with bilateral
hippocampal volume loss. In mild cognitive impair-
ment, the hippocampal volume loss has been shown
to be an early marker for developing AD later.196,197

In schizophrenia, abundant evidence exists which
points to smaller bilateral hippocampal volume
that is associated with both chronic and first-episode
schizophrenia,12,271 although the exact nature of
the smaller hippocampi is still a contested issue.
Whether these hippocampal volume losses are
progressive or developmental are issues which long-
itudinal MRI studies will address.275,396 Some recent
studies have emphasized the need for future research
to pay more attention to the issue of shape analysis, as
this has provided more consistent results and may
provide group discrimination in schizophre-
nia.246,272,273 In individuals at high risk for developing
schizophrenia and first-degree relatives of patients
with schizophrenia, smaller hippocampi are also
present.

Proton magnetic resonance spectroscopy studies in
schizophrenia have reported low N-acetyl-aspartate
levels of the hippocampus,262,397,398 which is also
present in the unaffected relatives of patients with
schizophrenia.399 The subtle volume reductions
found in schizophrenia and the presence of smaller
hippocampi early in the course of the disease seems
to argue against a neurodegenerative mechanism in
schizophrenia. The presence of hippocampal pathol-
ogy in relatives of schizophrenic probands may point
to a genetic risk factor instead.12,299 Research with
both monozygotic and dizygotic twins has shown that
smaller hippocampal volumes are present in both the
healthy twin and the twin with schizophrenia
providing additional evidence that smaller hippo-
campal volumes are a genetic risk factor for schizo-
phrenia,250,302 although additional decreases in
hippocampal volume following onset of psychosis
may augment the developmental impairment.400,401 In
a review article of studies which have assessed
hippocampal pathology with different modalities,
Weinberger402 postulates that genes involved in the
formation and maintenance of hippocampal circuitry
play a role in susceptibility. In rats, it has been shown
that not only neonatal excitotoxic lesions disrupt
development of the prefrontal cortex, but that tran-
sient inactivation of the ventral hippocampus during
a critical period of development may also produce
subtle anatomical changes in the hippocampus,
sufficient to disrupt normal maturation of the pre-
frontal cortex (and perhaps, other interconnected late
maturing regions).403 Recently, it was demonstrated
that schizophrenia (as well as bipolar disorder) was
associated with a reduction of key oligodendrocyte-
related and myelin-related genes, showing that con-
nectivity issues will play an important role in
unravelling the mystery of schizophrenia and other
psychosis-related disorders.404

In animal research, an extensive literature abounds,
which has shown that prolonged exposure to stress or
glucocorticoids, has adverse effects on the rodent
hippocampus.405 Hippocampal volume loss in Cush-
ing’s disease, which is characterized by a pathologic
oversecretion of glucocorticoids; major depression,
often associated with hypersecretion of glucocorti-
coids; and PTSD have been theorized to be the result
of glucocorticoid excess.405,406 Although stress is not
always associated with elevated cortisol levels,407 this
does not preclude the possibility that elevated levels
of cortisol at the time of trauma (which we are unable
to measure) are associated with hippocampal da-
mage.408 PTSD patients exhibit significantly higher
cortisol levels during and shortly after traumatic
script exposure compared to controls, which is
consistent with elevated cortisol levels at time of
initial trauma exposure.409 Heightened sensitivity of
the glucocorticoid receptor, associated with PTSD,
has also been shown to lead to hippocampal volume
loss, and this may also explain the volume loss
present in PTSD.8,407 Another possible explanation is
that smaller hippocampi may constitute a risk factor
for the development of stress-related psychopathol-
ogy.337 However, long-term treatment with paroxetine
is associated with increased hippocampal volumes
and improvement of verbal declarative memory in
PTSD, and this makes it unlikely that genetic factors
are exclusively responsible for smaller hippocampal
volume in PTSD.344

Failure of adult neurogenesis in patients with MD
has been proposed to constitute the biological and
cellular basis of this disorder.410,411 In patients with
depression and childhood abuse, smaller hippocampi
could also be explained by elevated cortisol levels at
time of trauma. Patients with Cushing’s disease
exhibit reduced hippocampal volumes which are
associated with the pathological oversecretion of
cortisol. In patients with borderline personality
disorder and childhood abuse, the reduction in
hippocampal volume has been theorized to be the
result of increased glucocorticoid levels, reduced
levels of brain-derived neurotrophic factors, and
inhibition of neurogenesis, due to early life stress
exposure.412 Increased levels of glucocorticoids have
also been thought to be accountable for smaller
hippocampal volume in individuals who survived
very low birth weight without major disability.413

Cardiac arrest and herpes simplex encephalitis have
also been associated with smaller hippocampi. In a
study with patients who had undergone breast cancer
surgery, the volume of the left hippocampus was
significantly smaller in the subjects with a history of
distressing cancer-related recollections than in those
without such a history.

In alcoholism hippocampal volume loss may reflect
general brain atrophy present in chronic alcoholism
as the hippocampal volume loss is proportional to
general reduction of brain volume.342 Increased pack-
ing density of small immature neurons with truncated
dendritic development indicative of curtailment in
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the development of the neurons and neuropil are
proposed to be responsible for the hippocampal
volume decrease in autism.224 In Down and Turner’s
syndrome, hippocampal volume loss has been related
to developmental abnormalities, but the exact me-
chanisms are still unclear.229,414 Increased hippocam-
pal volume in individuals with fragile X syndrome,
may result from neurotoxins, subclinical seizures or
kindling, denervation of afferent pathways, abnorm-
alities of the cellular–neurochemical–receptor inter-
action, or a combination of these factors.415

Brief cardiac arrest is typically followed by tran-
sient global ischemia, which leads to delayed neuro-
nal cell death and has been suggested to underlie the
hippocampal volume loss witnessed in humans with
cardiac arrest.416 In Parkinson’s disease it has been
proposed that demise of the entorhinal cortex in PD
(through the presence of neurofibrillary tangles)
isolates the hippocampus from its isocortical inputs
and thus causes volume loss.142 In Huntington’s
disease, a similar explanation may hold, as the
entorhinal region is atrophied in HD as well.417

In studies specifically performed in healthy con-
trols, it has been shown that the right hippocampus is
larger than the left. Hippocampal volumes are also
subject to right- and left-handedness, to gender, and
to age. The hippocampus has been directly imple-
mented in spatial,1 episodic,1 and even semantic
memory in humans.2,3 In addition, the hippocampus
is also involved in novelty processing,4,5 and stress
regulation.8 A lot of the methodological ground work
for reliably measuring hippocampal volumes has been
performed in healthy subjects, and has helped
straighten out several methodological issues.

Future directions
Although there are still obvious discrepancies in the
research findings in a large number of these disorders,
conflicting results and methodological issues are
being resolved. Greater consistency may be achieved
in the future with the introduction of reliable
automated methods of hippocampal volume determi-
nation. The use of MRI-derived hippocampal volume
is a proven method with diagnostic value, which is
also used in the determination of etiology and course
of neuropsychiatric diseases. As such it is an
indispensable technique and further studies are
needed to focus research on unraveling the mechan-
isms of hippocampal volume loss in these disorders.
Additional neuroimaging techniques such as diffu-
sion tensor imaging, magnetization transfer imaging,
magnetic resonance spectroscopy, shape analysis,
functional magnetic resonance imaging, receptor
imaging with PET, and functional connectivity ana-
lysis are vital instruments in achieving these goals.
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